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Distributions of self-interactions and voids in (1+1)-dimensional directed percolation
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We investigate the scaling of self-interactions and voids in (1 + 1)-dimensional directed percolation clusters
and backbones. We verify that the meandering of the backbone scales like the directed cluster. A geometric
relation between the size distribution and the fractal dimensions of a set of objects is applied to find the scaling
properties of self-interactions in directed percolation. Lastly we connect the geometric properties of the back-
bone with the avalanche distribution generated by interface dynamics at the depinning transition.
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Directed percolation (DP) is the common name for
branching processes with an absorbing (here, “dead”) state.
Denoting the active sites as “live,” directed percolation can
then be defined as a time-directed process for the propaga-
tion of live sites. For a given lattice, each site can come alive
with a probability p, if and only if one of its neighbors was
live at the previous time step [1]. Directed percolation has a
wide applicability, and was proposed to be closely related to
Reggeon field theory [2] which describes the evolution of a
density ¢ of live sites for a large class of branching pro-
cesses:
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This is a nonlinear Langevin equation where the noise term
obeys {(np(x,t) p(x',t")yc(x,t) S(x—x")S(t—¢') and thus
vanishes when ¢—0. Directed percolation has been related
to spatiotemporal intermittency [3], self-organized critical
models [4—6], and the propagation of interfaces at depinning
transitions [4,7—-11], as well.

Despite its usefulness, DP remains unsolved. Only in four
(spatial) dimensions or more is it tractable, since there the
active branches effectively do not meet [12]. In that limit,
where we effectively have a random neighbor updating, the
critical branching process has a size distribution for extinc-
tion at time ¢ that reflects the first-return scaling for a random
walk in the number of active sites, p(z)ot~>? [13]. In three
dimensions or less, the overlapping of different branches
leads to analytical difficulties, and this effect is most pro-
nounced in (1+ 1)-dimensional DP, which we make the fo-
cus of this work.

The DP backbone is the time-reversal invariant subset of
the (time-) directed percolation process. A picture of the
(1+1)-dimensional DP network consists of branches that
die (“dangling ends”) and branches that continue, on all
scales; within the branches there are voids, of all sizes, en-
closed by live branches (see Fig. 1). The backbone, however,
has no dangling ends—it has the geometry of a badly tangled
fishnet, where stringy lengths separate the multiply con-
nected blobs [14]. Recently much discussion has centered on
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the backbone in connection with models of interface pinning
in disordered media [7,4]. In this paper we study the distri-
bution of self-interactions and voids in DP, in the backbone
network, and associate voids with the avalanches expected in
interface motion at the depinning threshold [15,9-11]. Our
first step is to introduce a general formula that relates the
fractal dimensions of a set of objects to the size distribution
of the objects.

Size distributions and fractal dimensions. Consider a set
of self-similar objects, each with fractal dimension D whose
union is a fractal of dimension D, . Define a subset of this
total set, that consists of one point from each object. If this
point set has dimension D, then the number of objects
between sizes s and s+ ds contained within a box of length
L is

ny(s)ds=LPmms~"f(s/LP)ds, )

where the scaling function f(x) approaches 1 for x<€1, and 0
for x> 1. Since [sn;(s)dsxLPw, by matching powers of L
it follows that the number of objects of size s (for large, fixed
L) is distributed as n(s)xs™7 with

Dym— Dt D
— 1 — num D tot . (3)

In the case of D ,,=D,,, then the exponent 7=2 can be
deduced from D, and D by accounting for the mass of
objects that cross the boundary of a box of linear dimension
L. One obtains:
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We call these respectively the triplex and duplex formulas.
The formulas apply to self-affine objects as long as the di-
mensions are measured along a common axis, and the ob-
jects are disjoint.

One simple application is the distribution of intervals
separated by a fractal dust of dimension D in one dimen-
sion. Each interval can be associated with a point of the dust,
so that D, =D, and is self-similar with the full line, so
that D=D,,,=1. Therefore the interval lengths created by
the fractal dust are distributed like
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FIG. 1. Upper figure shows directed percolation cluster (thin lines) and
backbone (heavy lines). Lower figure shows a punctuation of the backbone
hull. The crossed area indicates the erosion due to one punctuation event.

n(l)ocl_l_Dnum. (5)

This result is discussed in [16] and was used by [17] for
first-return time of activity at a given site.
Directed-percolation exponents. If the percolation param-
eter p lies below a critical threshold p_, the propagation of
live sites has a finite lifetime. If p lies above p., the propa-
gation of live sites can continue forever. For p just below
P., the timelike correlation length (lifetime) diverges
x(p.—p) "l and the spacelike correlation length (width)
x(p.—p) ", where the (1+ 1)-dimensional exponents are
v =1.733 and v, =1.097 [12]. The order-parameter expo-
nent S is defined as the scaling of the density of the infinite
cluster (above threshold) with distance to threshold e
(=|p—p.: p=€P. For (1+1)-dimensional DP, 8=0.277.
These three exponents are believed necessary and sufficient
to completely characterize DP structures and correlations.
For the backbone network, v, and v| are the same as for
the full cluster. This was checked by direct simulation of
the meandering of the backbone (x2)oc26=001  je
2v, /vj=1.26, and by the scaling of the number of singly
connected bonds (“red bonds” [18]) along the backbone,
which leads to 1/v)=0.58 (see later discussion). By contrast,
the order-parameter scaling for the backbone is given by
B=2p, because a point belongs to the backbone precisely
when it belongs both to the forward and the backward DP
network [19,20]. (Hereafter, a tilde denotes a backbone ex-
ponent.) Other exponents are easily deduced, for example,
x=v, /vj=0.633, the exponent for the time development of
the average width of living sites. The scaling of the mass m
of the infinite cluster up to a correlation length [j=€"",
mxeP™YI7¥., leads to dimensions for one-dimensional
transverse and  longitudinal cuts: D, =1-8/v,,
Dy=1—B/v. In this notation, the full dimension measured
longitudinally is then D)+ y. Measuring how the cluster
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mass scales with its length for both DP and backbone of
directed percolation (BDP), see Figs. 2(b) and 2(c), we get
m(t)ct 47002 and m(t)oct!30*003 and we deduce the
respective dimensions of longitudina_l cuts D)=0.84%0.02
and f)” =0.67%0.03, consistent with 8=28=0.55. The prob-
ability for distance ¢ between subsequent live sites in a lon-
gitudinal cut is distributed oc¢ =172,

Now if clusters are initiated everywhere in space and
time, their size distribution follows from the duplex formula
[Eq. (4)] with D =D+ X, Daum=D =1+ x:

1+x _ V”+ v,
D”+X V]|+Vi—ﬂ ’

(6)

Ta— 1=

The exponent for clusters initiated in a single point is then
Tipt= Tan— 1.

Self-interactions in directed percolation. To calculate
when two branches in (1+ 1)-dimensional directed percola-
tion eventually interfere with each other, we examine voids.
A void is a region completely enclosed by the DP network.
The size of a cluster void is the number of noncluster sites
enclosed by two merging branches; backbone voids are de-
fined similarly. In both cases, the scaling of the void-size
distribution can be obtained from the triplex formula. The
voids themselves scale like the area of the affine region,
D=1+ yx. As the voids are dense on the DP network,
Dpyw=D|+ x and D\;=D =1+ x. The void areas s are then
power-law distributed n(s)ocs™ Tvoid with

Ditx_._ B
1+x ytv,

(M

Tyoid— 1=

The above argument applied to the backbone voids (replac-
ing D, with D||) gives %void:(v||+ v, — Zﬂ)/(V”'Jr v,).
These are in agreement with the numerical values
Tyoid= 1.93%+0.02 and 7,;q= 1.82£0.02 obtained from simu-
lations; see Fig. 2(a). Notice a duality between the distribu-
tion of all clusters [Eq. (6)] and the distribution of voids in
one cluster: (7,;—1) = (Tyoiq—1)~!. Simply related to
Teoia iS the 7 exponent for void length (|): 7,—1
=(Tyoia— 1)(1+ x). This confirms the measured distribution
of times between subsequent self-interactions P(t)
ot 235002 The time between self-interactions differs from
the time between subsequent activity at a given site, the latter
having a 7 exponent of D+ 1 (cf. the fractal dust result).

As an application, consider the distribution of voids
touching an interface which forms the one-dimensional
boundary along the backbone. The distribution of border
voids will differ from the overall distribution of voids be-
cause larger voids will have a larger probability to touch the
one-dimensional (1D) interface. Along a 1D path on the
backbone, small voids sit densely, implying D ,,=1; as be-
fore, D=D =1+ x. Thus the distribution of backbone
voids along the interface scales with exponent

_ 1
TID_].:m'. (8)

These border voids play a special role in the dynamics of
interfaces driven through quenched-disordered media. Ex-
amples of such models are the depinning dynamics at an
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FIG. 2. (a) The dashed lines are the distribution of times between self-
interactions. Full lines are the distributions of void areas. In both cases the
lower curve represents DP; the upper the backbone. Crosses show the dis-
tribution of eroded areas caused by a single punctuation event. The distri-
butions are all measured at critical p=0.7055 with clusters of length
=100 000 for DP and /=20 000 for the backbone simulations. (b) Solid
line is the scaling of average void width with length / along the time ¢ axis.
Solid circles show the rms meandering of the DP network. In both cases one
sees scaling «¢%-63*0-01 QOpen circles show mass of the network at cross
sections perpendicular to the time direction. (c) As in (b) but for BDP in-
stead. The additional dotted line shows the accumulated number of red
bonds.
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externally tuned critical threshold [7] or when driven similar
to invasion percolation [4,8]. In the model of Ref. [4] an
interface with small slopes advances at the point of globally
minimal pinning, followed by neighboring advances which
keep slopes small. This mimics the quasistatic dynamics of
the Kardar-Parisi-Zhang (KPZ) equation with quenched
noise [10]. This intermittently jumping interface gets pinned
along a DP backbone of high pinning strengths [9]. The ad-
vance of the interface occurs in bursts associated with punc-
tuations of voids in the underlying backbone [8,15,9-11].
We now associate the distribution of these bursts with the
distribution of voids on the outer surface (hull) of the DP
backbone.

A void of length ! that borders the backbone hull has a
probability to be punctuated proportional to the number of
singly connected sites n,4(/) on the length [ of the hull.
These are the famous red bonds introduced by Stanley [18].
To calculate n,.4(/) consider a segment of length / on the
backbone hull at the critical point p=p.. If p is decreased
by an amount € below the critical point, the cluster may be
disconnected on length / because each site on the cluster has
probability € to be removed. The average number of bonds
that disconnect on length [ is then N(l,e)
=n,.4(]) e+ O(€?). Ignoring the higher-order terms, the cor-
relation length of the cluster becomes equal to / at the €
value where N(/,€) is equal to 1. From the known correla-
tion length /=€~ "I we get n,4(1)=1""I. This result was ob-
tained for isotropic percolation by Coniglio [21]. This is con-
firmed by direct numerical simulation of the number of
singly connected bonds on length [: nqocl 058002
Weighting the void-size distribution by the chance a given
void is punctuated [o<n4(/)] and noting that the void area
is s=1'*X one obtains that the distribution of the areas of
the interface avalanches is a power law with exponent

1 1 1

= 1= B _Vn—l
Twid _1+X Y| 1+x

- ’ (9)

V“+ v,

which is identical to the earlier formula of Maslov and Pac-
zuski [11], and also discussed for other interface models by
[22]. Inserting the DP values v, =1.10 and »j=1.73 the ob-
tained 7=1.259*0.005 agrees both with large-scale simula-
tions of the interface model [4] (7=1.255+0.005 [23]), as
well as with direct simulations of eroded void areas resulting
from the removal of one backbone hull site [8]. However, a
punctuation typically leads to the elimination of an entire
cascade of backbone voids, see Fig. 1(b) (the probability to
eliminate N voids with one punctuation is in fact
oc N71:35%0.05 1247, Therefore the agreement between numer-
ics and the above formula for 7, using DP exponents, may
only be approximative. In fact, large-scale simulations [23]
show that v, (model)=1.05%0.02 for the interface model
[4] is smaller than v, =1.10 for DP. The measured
7=1.255%0.005 [23] and Eq. 9 then dictate a new value of
v|(model) and a slightly modified value of the interface
roughness exponent y=v, /vy [25].

The interface dynamics may be considered as a way to
assign weights to branches of the DP backbone. The obser-
vation of new exponents of DP with weighted branches in-
dicate that directed percolation could exhibit multiscaling.
This phenomenon might also explain the numerical observa-
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tion by [26] of close but not identical DP exponents (7,D)
for the “evolution” model [5].

Finally, the above derivation of the avalanche exponent
can be repeated for invasion percolation [27,28] using the
triplex formula. Identify D, as the dimension of the region
of the growing cluster where new bursts can initiate
(D num= D perimeter Which depends on the invasion rule) and D
as the dimension of a single avalanche (cluster). The ratio
D /D is the exponent for border clusters, defined as clus-
ters that have at least one connection to the invading cluster.
The exponent 7;,, for the invasion avalanches is given by
weighting these border clusters according to the number of
bonds through which they can be invaded, i.e., the red bonds
on the scale defined by the cluster size. Thus

Dy 1/v
7-inv_1= D _F

(10)

This relation was derived in [29].
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Summary. We have investigated self-interactions and
voids in both DP clusters and backbones, and have discussed
how their scaling depends on the DP exponents. It is note-
worthy that the self-interaction time for branches has finite
mean, in contrast to the time between subsequent activity at
a given site. We have also discussed avalanches occurring in
models of interface motion near the depinning threshold in
terms of voids of the DP backbone. Further, we presented a
general formula for relating dimensions to size distributions
which opens up for a study of scaling properties of many
other self-affine and self-similar structures.
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